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We prove necessary and sufficient conditions for linear combinations of given
functions Kk E C[a, b] (k = I, 2, ... ) to he dense in C[a, bJ, CoCa, b] respectively,
where the coefficients satisfy bound constraints. Our general approach to such
prohlems is based on a new method of functional analysis concerning a relationship
between approximations in normed linear spaces with generalized restrictions,
defined by seminorms. and certain corresponding properties of bounded linear
functionals on these spaces. In the special case of approximation by Muntz polyno­
mials with restricted coefficients some known results and sharpened versions of
these can be deduced from our general theorems. Finally, an application to another
type of function K k is obtained, where Kdt) = ¢(ti' k I), i' k -+y~. with ¢ being
certain analytic functions. " 1991 Academic P,m. Inc

Let C[a, b], - x < a <x, denote the set of all complex-valued con­
tinuous functions on [a, b], and let CoCa, b] be the set of all IE C[a, b]
with /(a) = O.

If K = (Kd is a sequence of functions Kk E C[a, h], and D = (D k) is a
sequence of numbers Dk > 0 (k = 1, 2, ... ), we define Ph.D to be the class of
all linear combinations g, g(t) = L~v~ I akKdtl (ak complex), with the
restriction that: ak I ~ Dk (k = 1,2, ..., N).

We ask for necessary and sufficient conditions on K = (Kd and D = (Dd
for Ph. D to be dense in Co [a, b] or in C[a, b] in the uniform norm.

This problem has been completely solved at first in the special case
Kk(t) = t\ [a, b] = [0, 1], and the following result was proved in
[2, Theorem 1] and [7] by using Bernstein polynomials.

THEOREM 1. Suppose that Kk(t)=tk and Dk=AZ, Ak>O (k= 1,2, ... ).
Then PK.D is dense in CoCO, 1] if and only if there exists a subsequence (k,)
0( (k) such that

.,.
and
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An analogous problem for the approximation by polynomials of a
monotonically decreasing sequence was solved in [1].

In this paper we give a general approach by extending a method of
functional analysis, which was introduced in [3, 4]. Our general method is
based on a relationship between approximations with generalized restric­
tions, defined by seminorms, and certain corresponding properties of
bounded linear functionals on normed linear spaces.

We shall obtain the following five results as applications of our general
theorems:

THEOREM 2. Suppose that K = (Kk), Kk E C[a, h], - x < a < h < x,
and D k> 0 (k = 1, 2, ... ). Then PK. D is dense in Co [a, h] if and only if the
following condition (8) is satisfied:

(8) rId~(t)1 < x
a

always implies ~(t) = 0 on (a, b] for a normalized t:J. on [a, h],
where :x is normalized if ::x ( t) = 2 - I [:x( t + 0) + :xl t - 0)] for
t E (a, b) with :xlb) = O.

Moreover, PK•D is dense in C[a, h] if and only if the inequalities of (8)
imply :xl t) = 0 on [a, h] for each normalized ~, which is satisfied if and only
if (8) is valid and I.:-~ 1 Dk IKk(a)1 = 'x.

It follows easily from Theorem 2 that I:= 1 Dk IKk(t)1 = x for all
t E (a, b] or all t E [a, b] is a necessary condition for PK. D to be dense in
Co[a, h], C[a, b] respectively. This is obvious if we choose for each fixed
t the function:x such that :x(u)=O (u>t) and :x(u)= -1 (u<t).

We deduce from Theorem 2 four special results by using properties of
linear functionals on C[a, b]. First, we give a new proof for the following
theorem, which is contained in a more general result concerning complex
exponents due to [2, Theorem 3].

THEOREM 3. rf Kk(t) = t", i'k > 0, i'k+ 1 - i'k~ C > 0, I.:~ 1 i' k 1 =x;,

and Dk = A~' with Ak> 0 (k = 1, 2, ... ), then PK.D is dense in Co[O, 1] if and
only i{ there exists a subsequence (k I) of (k) such that

I. Ak,1 = X; and Ak, --+ x; (i --+ ex:;).
i- I

(1)

We can improve [2, Theorem 2, Theorem 4 in the real case] and results
of [4] by
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THEOREM 4. Suppose that Kd t) = t)', i'k > 0, i' k+ I - i'k ~ C> 0,
It~ I i' k 1 = Xi, and Dk = Cka )., with a> 0, Ck >°(k = I, 2, ... ). Then PI\. ()
is dense in CoCa, h], 0< a < h, if and only if there exists (/ suhsequence (k ,)
of (k) such that

j I

and lim cl,)" ~ I.
I' ,

(2)

In order that PK. [) is dense in C[ a, h] it is necessary and su/flcient that there
exists a subsequence (k,) satisfying (2), and that L:~ I Ck = x.

Concerning Theorem 4 it is interesting that PK.IJ can be dense in
CoCa, h] even if Ck --.0 (k --. ct:), for example in the case Ck = k Ii, Ii> O.

For bounded i' k we prove

THEOREM 5. If K(t)=t;', O<i.k--.h (k--.x), O<h<x with i., # i.)
(i #j) and D k > 0 (k = 1,2, ... j, then P K.D is dense in CoCO, I] if and on!r (I'

-'-

L D k Ii' k - h In = ,x
k-l

for all n = 0, I, 2, ., .. (3)

Finally, we prove for another type of function Kk

THEOREM 6. Suppose that the function ¢J, ¢J(.:) = L,~~ 1 h,.::' is regularfor
I.: I < 1', 0 < r ~ 'x Irith

L \' l=X,

~. ~ 1
h,. "" 0

(4)

and that 0 < i'k --. x (k --. x j, i' k I < I' (k = 1,2, ... ). Then for
Kk(t) = ¢J(ti.k· l

) and D k > 0 (k = 1,2, ... ) the set P K • IJ is dense in CoCO, I] (f
and only if

2: DJk n= X

k=l

for all n = I, 2, .... (5)

Theorem 6 can be applied, for example, if Kk(t)=t/(t+i. k ), sin(ti' k I),
exp(ti.k-Ij-I with exp(x)=e'.

All of our proofs are based upon the following general theorem of
functional analysis.

THEOREM 7. Suppose that X is a normed linear space Irith a norm Ii x II
for x E X, and that X c:; X is a linear subspace with a seminorm p on X. If
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G s; X, then, in order that for every y E G and f, > 0 there exists an element
x E X satisfying

II y-x l ! <f, and p(x)<£,

the condition (ld is necessary and sufficient, where (I d denotes the property
that

IF(x)1 ~ Mp(x) (XE X)

for a bounded linear functional F on X always implies F( y) = 0 (y E G),

where the constant M < x; is independent of x.

Theorem 7 is a corollary of a more general result [5, Theorem lOin the
case Y=X, A(x)=x]. We deduce from Theorem 7 the following main
theorem for approximations in normed linear spaces by linear combina­
tions with restricted coefficients.

THEOREM 8. Let X he a normed linear space, let X k E X and Dk > 0
(k = 1, 2, ... ), and let P denote the set of all linear comhinations

x=I;>~,akxk (ak complex) with the restriction that laki~Dk

(k = 1, 2, ... , N). Then P is dense in a linear subset G s; X in the norm of X
if and only !l the condition (B G ) is satisfied, I"'here (B G ) denotes the property
that

.x-

L Dk IF( x k ) I < x;
k~1

for a bounded linear functional F on X always implies F(y)=O (yEG).

Proof of Theorem 8. The density of P in G is equivalent to the
approximation II Y - x II < f. with Iak I~ cDk (k = 1, 2, ..., N) for each y E G,
f, > 0 with some x E P, since G is linear. This is obvious if y is replaced by
c; -, y. Thus we take X in Theorem 7 to be the set of all x = Ii_, akxk
(without any restriction) and choose the seminorm p(x) =

max, "k",v lakl D k ' (which also is a norm on X). We obtain in this case
the equivalence of the conditions (Ie;) of Theorem 7 and (Be;) of
Theorem 8. For

.\'

I F(x)1 = Ik~' akF(x.)1 ~ M '~ka:,\ lak I Die '

(ak complex; N = 1,2, ... ) implies, in particular, It'~ 1 D k IF(x.) I ~ M
for all N = 1, 2, ... , and so 'LZ"_ I Dk IF(x.) I < x, if we choose ak such
that 10k 1= Dk and akF(x.) = D k IF(x')l (k = 1, ... , N). Thus (Bc;) implies
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(1(;). Conversely, L:-=IDkIF(xkll=M<x: implies IL:~lakF(xk)l~

L~v_l Dk IF(xdllak ! Dk I ~Mmax'O"'N lakl D;' (a k complex; N=
1,2, "')0 Therefore (Be;) is a consequence of (Ie,), which proves Theorem 8.

Theorem 2 follows immediately from Theorem 8 in the case X = C[a, b]
and G = Co[a, h], C[a, h] respectively, by the Riesz representation
theorem [8, p. 139]. The part of Theorem 2 concerning the density in
C[a,h] is obvious, since 'L:~,DkIKda)II:x(a+O)-:x(a)I<et:. implies
:x(a)=:x(a+O) if and only if'L:o.' Dk IKk(a)I=x:.

The following known theorem, which is used in the proofs of
Theorems 3- 6, is due to [6].

THEOREM 9. If A. k> 0, iok ~ I - io k~ C > 0, and 'L!~ , iO k ' = oX" then
Ii1ti'd:x(t)=(f'{qi')(k->x:), gld:x(t)I<x: implies :x(t)=O on (q, I] for
each q E (0, I], where :x is normali::ed.

An alternative proof of Theorem 9 is given in [3, Corollary of
Theorem 3].

Proof ()f Theorem 3. We first assume the existence of a subsequence (k,)

satisfying (I), and verify (B) of Theorem 2 for Kd t) = ti<, Dk = A ~'. It
follows from ,,"". A"IJo'ti"da(t)l<oc that I' th·d:x(t)-(!(A- i.,,)"-k =, k 0 ~ O' -. k,

(i ->x). Thus :x(t) =°on (0, I] by Theorem 9 for a normalized :t, and
PK. 1J is dense in Co[O, 1] by Theorem 2. Conversely, we suppose the
density of PK.D in Co[O, I]. A simple argument shows that there is a
subsequence (k,) with (I) if and only if 'Lk" I. A,", h io k- , = x: for all h> 0,
and we now assume that

(6)

for some b > O. For each g E PK. f) we have

.v

g(t)= L ak ti ,= L akt i.,+ L akti.'=g,(t)+g2(t).
k ~ I k k

AI,; < h Ak?: h

Since IGk I ~ A~', iok+, - io k ~ C > 0, and so iO k ~ (k - 1) c, we can
find a number dE (0. 1) such that I g,(t)1 ~ 'LZ"- , bi.kti, ~ I for all t E [0, d]
and all g E PK.Do By the density of PK.D there is for each fE Co[O, I]
and 1;>0 a function gEPK• D , g=gl +g2 such that 12e- 1f(t)-gr(t)­
g2(t)1 < I (t E [0, I]). Thus 12/;-'f(t) - g2(t)1 < 1 + I g,(t)1 ~ 2,
and so I f(t) - 2 -'eg2(t)1 < c for all t E [0, d]. Therefore the set of all g2
is dense in Co[O, d], and, referring to the definition of g2' we have
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Lk;>i.A';3h i.k I = x by the theorem of Miintz [8, p. 336J, which
contradicts (6). This proves Theorem 3.

Proof of Theorem 4. By using a simple substitution we may plainly sup­
pose that 0 < a < h = I. We assume first the existence of a subsequence (k,)
with (2), and verify (B) of Theorem 2 for Kk(t) = t\ Dk = ('ka ;". Suppose
now that

, I

I Ida(t)1 <x'
."

(7)

for a normalized 'X.. For each f; > 0 with a < I - I; we find by (2) an ill
such that ('k,>(1-£);,,(i~io), and, by (7), we have tt;',dcx(t)=
(Q(1-r.) ;',a;',) (i~ x), which implies :x(t)=Oon [a(I-I;) I, IJ, and so
:x(t)=O on (a, IJ by Theorem 9. This proves (B). Conversely, we assume
the density of Pi-.J! in Cora, I]. The existence of a subsequence (k,)
satisfying (2) is equivalent to the property that Lk" 1.,,;3 q;' i. k I = ,x for all
q E (0, 1). Suppose now that

(8)

for some q E (0, 1). For each g E PK.J! we have

.\'

g(t)= L akt;·'= L ak t;'+ L ak t"=gl(t)+g1(t). (9)
k ~ 1 k k

q < (/'~ (-J.. ~ (/,I...

We can choose dE(a, IJ such that qa"d< I. Since lakl ~('ka " and
I' k ~ (k - I) c, it follows from (9) that

I gl(t)! < L q;"a i'd"~ = M < X
k ~ 1

(10)

with a constant M for all t E [a, dJ and all g E PK. J!' For each
fECo[a,IJ and £>0 there is a function gEf K./), g=RI +g1 such
that 12c;- IMf(t)-gl(t)-g2(t)I<M(tE[a, IJ), and therefore, by (10),
12c;- I Mf(t)-g2(t)1<2M, and so If(t)-2,I£M Ig2(t)I<f. on [a,d].

This density of the set of all g2 in Cora, dJ implies the divergence of the
series in (8) by (9) and by the theorem of Miintz for the interval [a, dJ,
which contradicts (8). Thus, by Theorem 2, condition (B) is equivalent to
the existence of a subsequence (k,) with (2), and therefore the part of
Theorem 4 concerning the density in era, hJ is obvious by Theorem 2.
This completes the proof of Theorem 4.
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Proof of Theorem 5. First we suppose (3), and prove (B). If
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for a normalized Cl, then we set

r I

w(s) == I r' (h( I),
'0

.1

J IdCl(t)l<c£
o

s = x + iy.

(11 )

The function \I' is regular for x = Re(s) > 0, and II' has a power series

W(s)= L q,(s-h)"
\ -- 0

(Is-hi <h) (12)

with coefficients q,.. Thus w(i.d =nt;" (h(t) -> qo (k -> x), since i' k -> h
(k -> ,x). Therefore it follows from (11) that I::_I Dk Iqo I < x, which
implies qo = °by (3) in the case n = 0. If q" = °(\' = 0, 1, ..., n - 1) is proved
already, then we have W(i'k) = (i'k - h)" q"ek with ek -> 1 (k -> x) by (12),
and therefore It= I Dk Ii' k - b I" Iq" I < x' by (11), which implies q" =°by
(3). Thus w(s)=o for Re(s»O, and we obtain Cl(t) ==0 on (0,1] by well
known identity theorems of the Laplace transform. This proves the density
of PA.D in CoCO, 1] by Theorem 2. We now suppose that PA,II is dense in
CoCO, 1] and prove (3). If

L DkIAk-hl"<x
k=1

(13)

for some n, then we choose:x so that w(s)=gt'dCl(t)=[I-e- h hl]".
Hence Jb Ida(t)1 < x, and wUd = Uk - h)" ek with ek -> 1 (k -> x). We
obtain II'= 1 Dk Iw(i·dl < CfJ by (13), where Cl is not identically °on (0,1].
Thus condition (B) is not satisfied, which contradicts the density of P A. f).

This proves Theorem 5.

Proof of Theorem 6. First, we assume (5). We suppose that

-,
( 14)

with

(15 )



214 LOTHAR HOISCHEN

where we denote by vI with \', + I > Vi the integers v for which hI # O. To
prove the density of PK, f) in Co [0, I] we have to show, by using
Theorem 2, Theorem 9, and (4), that J1i=O U= 1,2, ... ). Since ;" ---+ x, it
follows from (15) that H,=h"IJ1I/" "Ie, with e,---+1 (k---+:x:). Hence, by
(14), L:'= I Ib,., II J11 I D,;" 'I < oc, which implies J1! = 0 by (5), since hI! # O.
If J1i = 0 (i = I, ..., n - 1) is proved already, then, repeating the argument,
we obtain H, = b'nJ1n;'k "ne" e,---+ I (k---+ x'), and L;;'= I !h,.!1 J1n; Dk;'k ", < :x:
by (14) and (15), which implies J1n=O by (5), since h,,#O. Conversely,
suppose that PK,f) is dense in CoCO, I]. To prove (5) we assume that
Lt-l D,I.,-n <:x: for some n and fix an integer m> 1 such that I'm> n,
Since I'k ---+ x, we have

·f.

L D,I" "m <x.
, .. I

(16 )

We choose rx so that Jb t S dx(t) = n;,,~ II [I - e (I ',l]. Thus g Idrx(t)1 < oc
and J1i = 0 (i = I, ..., m - 1), where rx is not identically 0 on (0, 1].
Concerning this ':t. we have by (15)

~ 1; X

L Dk IH,I ~ L D,;" 'm L Ih",1 A.~m "'IJ1il,
k~1 k-I i~m

where (17)

l=m i=m

for large enough ko, since I' k -+ oc. We have IJ1i I~ Sb Idrx(t)! < Cf.... Thus
Lt= I D k IH k I<x by (16) and (17), and condition (8) of Theorem 2 is
not satisfied, in contradiction to the density of PK, D in Co[0, I]. This
completes the proof of Theorem 6.

Analogous theorems can be proved by Theorem 7 or Theorem 8 for the
approximation in LP[a, b]-spaces or normed linear spaces, provided that
the linear functionals have an explicit representation, where we might
choose restrictions on the coefficients by various seminorms.
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